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The problem of making an exact theory of the scattering of particles from composite targets is attacked 
by introducing elementary particles to represent the composite systems. It is shown that if the only couplings 
are those between the particle representing the compound and its constituents, soluble linear integral 
equations, reducible to the Lippmann-Schwinger equation, can be written for the scattering of one of the 
constituents of the composite system. As examples, an exactly soluble three-dimensional three-body problem 
based on nucleon-deuteron scattering and an exactly soluble three-dimensional model of deuteron stripping 
are presented. Each can be reduced to exact optical models. It is proven that these equations have solutions 
even when the singular limit which corresponds to an exact resemblance between the elementary and 
composite system is taken. The method for extending the equations to three-body problems with local 
interactions and the relation of the equations presented here to high-energy diffraction properties of ampli
tudes is discussed. 

I. INTRODUCTION 

WITH the exception of a few special cases, scatter
ing experiments are usually performed with 

compound systems. That is, at least one of the particles 
involved in the scattering is a system capable of splitting 
into other particles either via a production mechanism 
or bound-state break-up. In spite of the vast body of 
experimental information assembled on these scatterings 
and reactions, the theory of them is rudimentary because 
any analysis goes immediately and essentially beyond 
the two-body problem. It is true that many ingenious 
approximate methods have been developed for treating 
the problem, for example the impulse approximation,1 

the optical model,2 the distorted-wave Born approxi
mation,3 the strip approximation,4 Regge poles,5 and 
many others; and it is true than many of these methods 
work very well in some cases, but their range of validity 
can only be determined empirically at best and often 
their connection with more fundamental theory is 
unclear. The problem is that our inability to solve the 
three-body problem makes the finding of soluble 
examples difficult and the nonadiabatic nature of 
composite systems makes perturbation theory useless.6 

These two difficulties combine to make "exact'' 
numerical computation impossible; that is, no one 
knows how to give a numerical program, the step by 
step execution of which can be made to come arbitrarily 
close to the exact amplitudes. 

Some recent theoretical developments offer hope of 
surmounting some of these problems and this paper is 
a first foray in that direction. We shall concentrate on 
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the nonrelativistic problem of two-body scattering 
reactions in which one of the incoming particles is 
compound. The recent development on which we shall 
lean most heavily is the substitution of "elementary" 
particles for composite systems.7-9 This substitution 
gets us immediately over the nonadiabatic nature of the 
composite system by introducing it, or its equivalent 
elementary particle, into the theory from the beginning 
for all strength of interaction. What we shall see is that 
if no more interactions among particles are introduced 
than those required to couple the elementary particle to 
the other particles, soluble linear integral equations can 
be derived for the scattering amplitudes. The solutions 
of these equations represent exact three-dimensional 
soluble models of scattering and reactions involving 
production or break-up. In the limit in which the 
elementary particle represents a bound state, they yield 
an exact model of three-body scattering problems such 
as stripping. These equations can be cast into the form 
of Lippmann-Schwinger equations10 or equivalent 
Schrodinger equations and, hence, are an exact optical 
model. We shall concentrate on deriving equations of 
this type, which involve amplitudes off the energy shell 
rather than the more fashionable equations involving on 
the energy-shell amplitudes only11 since the latter in
volve unitarity and, hence, nonlinear conditions whereas 
the former are linear. Of course, the amplitudes we 
obtain will be unitary, as they are exact amplitudes. We 
wish only to point out that the price of staying on the 
energy shell is nonlinear relations. 

The approach is to take some scattering or reaction 
amplitude involving compound systems and to intro
duce an elementary particle for each compound system. 

7 M . Vaughn, R. Aaron, and R. D. Amado, Phys. Rev. 124, 
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8 This idea has been applied in R. D. Amado, Phys. Rev. 127, 
261 (1962). 

9 This method has also been proposed by S. Weinberg, Phys. 
Rev. 130, 776 (1963). 

10 B. A. Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950). 
11 See G. F. Chew, The S-Matrix Theory of Strong Interactions 

(W. A. Benjamin and Company, Inc., New York, 1961). 

485 



486 R. D . AM A D O 

The minimum couplings between these particles and 
the others in the system are then introduced to make 
the reaction under study occur, but no extra interactions 
or couplings are allowed. This corresponds to construct
ing an elementary-particle theory which has the same 
Born approximation as the composite theory. The 
scattering integral equations are then derived for the 
simplified theory. They are not solved in this paper, but 
it is proven that they possess a solution even in the 
bound-state limit. Since they are no more complicated 
than the usual integral equations of ordinary potential 
scattering, the technique for their solution is straight
forward. At this stage, the theory is a soluble example of 
scattering and reactions from compound systems with 
only the minimum couplings essential to the process. To 
go further than this requires the introduction into the 
theory of the interactions and couplings not directly 
responsible for the composite system but certainly 
present in physical problems. Since these "residual 
interactions" do not have bound states, and since all 
the composite, nonadiabatic effects are accounted for 
in our solution, it may be possible to treat these inter
actions as perturbations on the model solution pre
sented here and, hence, develop a consistent, systematic 
approach to the three-body problem and more complex 
problems in quantum mechanics.12 We hope to make an 
analysis of this possibility in a subsequent paper. In 
this one we present only the method of obtaining 
soluble, model three-body problems. 

In Sec. I I we present a model of nucleon-deuteron 
scattering which has the same Born approximation as 
ordinary nucleon-deuteron scattering. We show there 
how treating the deuteron as elementary allows us to 
write down a perturbation expansion for the amplitude 
and then sum that expansion into an integral equation. 
This equation is cast into an exact optical model for the 
scattering. In Sec. I l l it is proved that, in the singular 
bound-state limit, the equation derived in I I has a solu
tion. Those with faith may omit Sec. I I I . Section IV 
treats a model of deuteron stripping by the methods 
of Sec. I I . Soluble equations are obtained for elastic 
deuteron-nucleus scattering and for stripping. I t should 
be noted that all these models are full three-dimensional 
models producing scattering in all partial waves. Section 
V discusses the results and points to a number of 
questions left open. In particular, it discusses further 
the question of the effect of the residual interactions 
and of the connection of these results with questions of 
analyticity of amplitudes and, in particular, of diffrac
tion scattering at high energy. The derivation of some 
Green's functions is presented in Appendix I and a 
singular model for which the bound-state limit is 
difficult to take is presented in Appendix I I . 

12 The idea of treating separately the nonadiabatic features 
and the rest in perturbation seems first to have been stressed by 
S. Tani, Phys. Rev. 117, 252 (1960). This is also stressed by 
Weinberg, Ref. 9. 

II. FORMULATION OF A SIMPLE EXAMPLE: 
NUCLEON-DEUTERON SCATTERING 

As a simple example, we consider the scattering of a 
spinless particle by a composite of two such particles. 
One can think of this as a very simplified version of 
nucleon-deuteron scattering with only one sort of 
nucleon, assumed to be a spinless boson. Fermions 
could also be treated, but they would require the 
introduction of spin and the accompanying kinematical 
complications. In accordance with the resemblance, we 
call the particle n and the bound state D. Of course, if 
the n-n interaction is an ordinary local potential in 
which D is a bound state, we cannot reduce the equation 
for n-D scattering to simple form. The goal is to find a 
theory that can be handled exactly and the first 
approximation to which agrees with the first approxima
tion of the local potential theory. This approximation, 
the first Born approximation for n-D scattering, is 
represented graphically in Fig. 1. I t carries with it an 
amplitude 

7 oV( (n -+n /2 )0 / ( (n+ny2)Q 

£ - n 2 - n / 2 - ( n + n ' ) 2 

where we have taken units in which h=2m (m is the n 
particle mass) = 1. E is the total energy variable, it being 
recalled that we are, in general, allowing amplitudes to 
be off the energy shell. The vertex function f(q2) is 
related to the Fourier transform of the D bound-state 
wave function <?(<f) by 

Vfe2)=(^2+e)<?fe2), (2) 

where e is the D particle binding energy. / is normalized 
so t h a t / ( g 2 = — e/2) = l, then |YO2 is the residue of (1) 
at the pole of the denominator on the energy shell. To 
corresponds to the invariant strength or reduced width 
or coupling constant of the process D —> In, The factor 
of \ is kinematical. 

The program is now to find a theory simple enough to 
be handled that has (1) as its first Born approximation. 
If we treat D as elementary, that is introduce an 
independent field for it, then a candidate for this simple 
model is one which contains only an interaction per
mitting D+±2n. A discussion of the method for making 
this substitution and as much of its justification as is 
known has been given elsewhere.7,9 So far it has been 

n _ n ' FIG. 1. The Born 
_ approximation to 

/ n-D scattering. The 
/ broken lines repre-

/ - > - > , sent the n particles 
/ - n - n and the full lines the 

/ D's. The vector 
/ labels indicated mo-

> Z+ menta. 
- n n1 
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proven that this substitution can be made equivalent 
to an ordinary potential only for the n-n scattering 
channel.13 However, the arguments given in VAA lead 
us to hope that the elementary-particle theory and 
bound-state theory are equivalent in all channels. We 
shall proceed on that assumption. I t is most convenient 
to proceed in a second-quantized formalism. For the n 
particles we introduce momentum space field operators 
^ n obeying the canonical boson commutation relations. 
For the D "particle" we introduce a renormalized 
momentum space field <£D which obeys the commutation 
relations 

[*D,$D/] = 0, [$D,$D/ t] = 5D,D//Z, (3) 

where Z is the wave function renormalization of the D 
particle. We assume its bare mass is always chosen so 
that its renormalized mass gives the proper D binding 
energy. We assume the fields are normalized in a unit 
box, but will later pass to the continuous limit. As an 
interaction Hamiltonian we take 

7 is the renormalized coupling constant of the theory 
and the \ comes in because we take the convention 

1 

| »,»') = —^JV), (5) 

so that states are properly normalized. This interaction 
gives (1) as a Born approximation for n-D scattering, 
except that 7 replaces To. As outlined in VAA, the 
theory defined by (4) has meaning for all 7 between 0 
and 70. In the singular limit 7 = To, the theory yields the 
same predictions as a theory in which the D is a pure 
bound state in a potential between n particles separable 
in momentum space.14 That is a theory in which the n-n 
potential gives the D bound state exactly but gives n-n 
scattering in S states only. In that limit we have Z=0. 
The point is not whether such a theory is a good approxi
mation to actual nucleon-nucleon scattering, but rather 
whether we can solve n-D scattering in this model. If 
one wishes to study a local n-n potential, it is necessary 
to add to (4) the difference between this local potential 
and the separable potential. Since this difference has 
no bound state, it may be possible to develop a con
sistent perturbation expansion for n-D scattering in 

13 This equivalence is proven in general in the Appendix of VAA. 
It is also the content of the equivalence theorem of Weinberg, 
Ref. 9. 

14 The fact that some three-body problems, particularly station
ary state problems, are soluble with separable potentials has been 
exploited by A. N. Mitra, Nucl. Phys. 32, 529 (1962); Phys. Rev. 
127, 1342 (1962). 

FIG. 2. The sum of graphs for n-D scattering, broken lines for 
n's and full lines for D. The external lines are indicated only to 
show what comes in and goes out, but are not included in the 
definition of the amplitude. 

powers of that difference using the solutions with (4) 
alone as an unperturbed basis. We will discuss this 
point further in Sec. V, but the first order of business, 
either towards that end, or simply toward the goal of a 
soluble model, is the solution of n-D scattering with 
the interaction (4). 

The dispersion methods used previously8 can be used 
here to derive integral equation for the n-D scattering 
amplitude, but a direct derivation, via a diagrammatic 
perturbation expansion is simpler. Such a derivation in 
the bound-state limit is highly suspect, but the assump
tion is that T in (4) can be made arbitrarily small, so 
that an expansion is valid and then, when the series is 
resummed to give an integral equation, T can be made 
large. The first Born approximation for the amplitude 
is represented graphically in Fig. (1). Further approxi
mations can easily be written down recalling that all 
that can happen in this theory is D +± 2n, so that any 
internal D line must first split into two n's. One of these 
n's can go across and form a D with the third n, giving 
a "rung" in a "ladder" graph, or the n can recombine 
with the original n, giving a "bubble" in the D propa
gator. With this in mind, we may write for the n-D 
amplitude the sum of graphs shown in Fig. 2. The top 
line of the figure represents the sum of all ladder-type 
interactions, under each of which we indicate the sum 
of all possible bubble-type insertions on internal D 
lines. These bubbles can be summed into a full D 
propagator represented by a heavy line as in Fig. 3. 
Putting this into Fig. 2 we get just a standard sum of 
ladders, with each internal D propagator represented by 
a heavy line. This can be summed to a standard integral 
equation, which is a kind of exact Bethe-Salpeter15 

equation for n-D scattering, as in Fig. 4. This figure 

FIG. 3. The sum of "bubbles" for the full D propagator. 
15 E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951). 
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FIG. 4. The integral equation for the n-D amplitude, 
represented by the cross-hatched "black box." 

represents a simple linear integral equation for the 
amplitude. I t is linear since we are allowing the ampli
tude to go of! the energy shell. 

The form of the equation is made more substantial if 
we call the scattering amplitude in the center of mass 
(n ' | / ( £ ) | n ) and the Born term (1), (n' |B(E) |n) . The 
propagator we need is for an n particle of momentum n" 
and energy n"2 and for a Z>, with its bubbles, of momen
tum — n " and energy Dn". This propagator we write as 

(E-n"*-Dn„)-lS(E-n"*-Dn„) = GoS, (6) 

where S is the known effect of the bubbles and is 
normalized so that 5 ( 0 ) = 1. I ts precise form is derived 
in Appendix I. The energy E is understood to have a 
small imaginary part of the appropriate sign. Translated 
to these terms, the diagrammatic equation of Fig. 4 
becomes 

(n'\t(E)\n)=(n'\B(E)\nn 
1 

(2TT)3 

X 
/ 

dsn"(n'\B(E)\ri')S(E-n"2-Dn„)(ri'\t(E)\n) 

E-n"2-Dn>< 
(7) 

which is a linear integral equation for / very similar to 
the Lippmann-Schwinger equation.10 In fact, we may 
transform it to that equation. Let us write the equation 
formally as 

t = B+BG0St. (8) 

Since Go and 6* commute, we may write 

t = B+BS1/2G0S
1/2t. (9) 

If we now define 

(10) /'=.<?l/2/Cl/2 SV2tSu 

and 

we have 

B' = S1/2BS1/2, 

t' = B'+B'G0t', 

(11) 

(12) 

which is just the Lippmann-Schwinger equation with 
B' playing the role of the potential. Since 5(0) = 1, /' = / 
on the energy shell. 

Equation (12), or the corresponding Schrodinger 
equation into which it can be cast, may be thought of as 
the exact optical model for n-D scattering. I t is an 
optical model since n-D collisions can lead to D break
up, or to production in the language of an elementary D, 
and this is exactly taken account in the equation. B is 
purely real, but S becomes complex at the production 
threshold. This is to be expected since the production 
possibility comes from the virtual D—+2n process, 
which is summed in S. The potential Bf is nonlocal and 
energy-dependent and, hence, the solution of the 
Lippmann-Schwinger equation, or of the corresponding 
Schrodinger equation is not simple, but it can be found 
by standard methods, particularly as Bf is spherically 
symmetric, so that a partial-wave decomposition is 
permitted. That is it can be found provided it exists. I t 
is easy to see that it does for the elementary particle 
case, but since 5(oo) = l /Z , closer attention must be 
paid to the convergence of integrals, etc., in the bound-
state limit for which Z = 0 . The next section is devoted 
to that problem. 

III. THE PROPAGATORS AND SOLUTIONS 
OF THE EQUATION 

We wish to discuss as much as we can of the several 
properties of the solutions of (7) and, in particular, the 
question of the existence of these solutions in the bound-
state limit. This latter question is most easily studied 
for the standard equation (7), symmetrization of the 
kernel, as in Eq. (12), or turning the problem to a 
differential Schrodinger equation, neither affects nor 
sheds much new light on this question. From the 
standard theory of integral equations, we know that we 
may apply the Fredholm method to (7) and, hence, 
obtain a solution, so long as the kernel of the equation 
is square integrable.16 The kernel of (7) is 

(n' | K{E) | n") = (n' \B(E) \ nf,)S{E-n,f2-Dnlf)/ 

(E-n"2-Dn„), (13) 

with ( n ' l ^ ^ l n ' O given in (1) but yQ
2 replaced by y2 

and 

S(x)~-
d*nf(n2) 

2(2wyJ (e+2n2)2(x-e-2n2). 
, (14) 

as we show in Appendix I. In discussing the bounded-
ness and square integrability of the kernel we need not 
be concerned with the pole of the propagator since we 
can give E a finite imaginary part and push the pole off 
the integration path. Since the kernel then is bounded 
for all finite argument, the question of square integra-

16 See R. Courant and D. Hilbert, Methods of Mathematical 
Physics (Interscience Publishing Company, New York, 1953), 
1st English ed., pp. 112-153. 
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bility comes down to the question of the behavior of the 
kernel for large argument. This would correspond, in 
the Schrodinger equation formulation, to a study of the 
singularity of the potential for small distances in con
figuration space. Since S( <*>) = 1/Z, the behavior of the 
kernel for large argument will be very different for an 
"elementary" .D(Z^O) and in the bound-state limit 
(Z=0) . So long as ZT^O and / is bounded at infinity, it 
is easy to see that the kernel is square integrable. Hence, 
the question is only whether the equation has a solution 
in the singular limit. 

To study this we shall need to know more about the 
behavior of / for large argument. As we have seen, if 
we wish D to represent an 5-wave bound state with 
wave function in momentum space <$>{q2)y the appro
priate choice for / is given by Eq. (2). The behavior of 
/ for large argument will depend on <f>{r), the bound-
state wave function in configuration space, for small r. 
If the bound state is a state in a potential V (r); and if 
rV(r) is analytic near r = 0 , then it follows from the 
general theory of differential equations that <t>(r)^rs 

s = 0, —1 near r=0 . 1 7 s= — 1 is ruled out as being too 
singular.18 Thus, <t>(r) tends to a constant as r —> 0, and, 
of course, decays exponentially for large r. For the 
Fourier transform we have 

and the fact that 4>{q2) is a function of q2 only we can 
get that 4>(q2) is of order \/qA for large q2. An example of 
this is the Hulthen wave function21 which has Fourier 
transform 

f(.qt) = c/(q*+ci>)(q*+p), 

where c, a2, and /32 are constants. For our purposes (16) 
is sufficiently strong. I t implies for / that 

f(qt) = C/ql+^, v%0, q large. (17) 

In order to study the kernel at large argument, we 
must discover the rate at which Z —» 0. In the bound-
state limit we can write 

S~l(x) 
To2 f 

2(2TT)3J 

(Pnf(n2) 

(2TT)V (e+2n2)(x-e-2n2) 
(18) 

For large x this will go like C/x if / decreases sufficiently 
rapidly so that 

/ 
d*nf2(n2)/(e+2n2) (19) 

4TT r°° 
4> ((f) — — / rdr </> (r) sinqr 

q Jo 

47rr 47rr f°° r°° d<j)(r) T 
= — / dr <j>(r) cosqr+ I rdr cosqr | , (15) 

<72LJo Jo dr 

where we have integrated once by parts and used 
r<j>(r) | o° = 0. If we assume Jo°°<l)(r)dr exists and that 
<f> (r) and d<j>/dr have bounded variation, it follows from 
the Riemann-Lebesgue lemma19 that the integrals in 
the second line of (15) are at least of order 1/q for large 
q. Hence, we have that 

4>{q2) = C/q*+\ r ^ O (16) 

for large g, C a constant. For a Yukawa potential, this 
result can be proved more directly using the representa
tion for the bound-state wave function in a Yukawa 
potential given by Blankenbecler and Cook.20 

In general, $(q2) will have a branch point at infinity 
and (16) is the strongest result we can obtain. If in some 
special case <t>(q2) is analytic at infinity, then from (16) 

17 See E. T. Whittaker and G. N. Watson, Modem Analysis 
(The Macmillan Company, New York, 1948), American ed., 
pp. 194-200. 

18 See P. A. M. Dirac, The Principles of Quantum Mechanics 
(Oxford University Press, Oxford, England, 1958), 4th ed., 
pp.155-156. 

19 See Ref. 17, pp. 172-174. 
20 R. Blankenbecler and L. F. Cook, Phys. Rev. 119, 1745 

(1960). 

exists. The bound given in (17) is sufficient to make (19) 
exist even with 17 = 0. Hence, for large argument S(x) 
tends to Cx. The kernel, for large n\ n" then tends to 
C(n'\B\n"), which because of (17) is square integrable 
even with t\ = 0. This establishes that Eq. (7) has 
meaningful solutions even in the bound-state limit, and 
that they can be discovered, for example, by use of 
Fredholm methods. I t is clear that if the kernel of (7) is 
sufficiently regular to admit the usual solutions, the 
potential in the corresponding Schrodinger equation 
derivable from (12) will also be sufficiently regular. All 
of this depends on the large argument behavior of the 
source function. A singular example where we put 
f(x) = 1 all x, is discussed in Appendix I I . 

IV. STRIPPING EXAMPLE 

In the previous sections we discussed a simple 
example of a three-body problem and a method for its 
analysis. In this section we take our example from a 
more complex situation—deuteron stripping. Once 
again, we shall use the real names of the particles, even 
though they appear in the theory as mere shadows of 
their true selves. 

We consider a typical stripping reaction on a complex 
nucleus A, d-\-A —» p+B. The Born approximation may 
be represented graphically as in Fig. 5. As before, our 
method is to treat all particles as elementary and intro-

21 L. Hulthen and M. Sugawara, in Encyclopedia of Physics, 
edited by S. Fliigge (Springer-Verlag, Berlin, 1957), Vol. 34. 
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FIG. 5. The Born 
approximation for 
A(d,p)B. 

duce only those interactions among fields necessary for 
Fig. 5 to occur. These clearly are a coupling which 
allows B *± n+A and one which allows d <=± n+p. With 
the former we associate a renormalized coupling con
stant r and source function F(n2) and with the latter a 
renormalized coupling constant y and source function 
f(n2). For kinematical clarity we assume B and A to be 
fixed at the origin; it is simple to relax that requirement. 
In terms of these quantities, the amplitude associated 
with Fig. 5 is 

yVF(n2)j\[_{n-V)/2j) 

E-p2-n2-eA 

(20) 

where we have put 2mp = 2mn = h=l, and where €A is 
the energy of nucleus A. I t should be noted that we 

assume no p-A coupling. Introduction of such a coupling 
seems to complicate the problem to a point where it is 
no longer possible to write a Schrodinger or Lippmann-
Schwinger-like equation for the amplitudes. I t should, 
however, be possible to introduce the p-A interaction 
in some perturbation sense in a more refined theory so 
long as there is no p-A bound state. As before, we remind 
the reader that the point is not to make a good theory 
of deuteron stripping, or at least not yet; but rather to 
make an exact theory which has the essential Born 
approximation of stripping. 

We may now write down the equations for the strip
ping amplitude. The arguments proceed just as Sec. I I , 
and are again most easily presented graphically. The 
analogy of Fig. 4 in this case is Fig. 6(a). We see that 
it is not an integral equation for stripping, but rather 
relates the stripping amplitude to the elastic d-A 
scattering amplitude. Studying this elastic amplitude 
in the same way leads to Fig. 6(b). This relates elastic 
d-A scattering back to stripping. We may eliminate one 
for the other and get Fig. 7 (a) for the stripping ampli
tude or Fig. 7 (b) for elastic d-A scattering. Both can be 
combined in a "matrix equation" as shown in Fig. 7(c). 

As a specific example we take the elastic scattering 
amplitude. Given this amplitude, the stripping ampli
tude may be computed as an integral over it by use of 
the equation implicit in Fig. 6(a). Figure 7(b) may be 
written 

( k | r C E ) | k ' ) = ( k | / ( E ) | k ' ) -
1 fd*k"(k 11(E) I k")Sd(E- eA-Dk„)(k" \T(E)\ k') 

(2TT); E—eA — Dk" 
(21) 

where k and k' are the momenta of the in and outgoing deuterons, Z>k is the energy of a deuteron of momentum k, 
€A the energy of A, and E the total energy variable. S$ is the sum of bubbles for the deuteron and is given by 

Sd{oo)~- 1 — 
ylx dhi}2{n2) 

(2TT)V (€d+2n2)2(x-2n2-ed). 
(22) 

where ed is the deuteron binding energy. The expression (22) may be derived by the methods in Appendix I. The 
inhomogeneous term ( k | / ( E ) |k ') is given by 

(k|7(£)|k') = 
7*1* / • ^ / ( ( p - k / 2 ) 2 ) / ( ( p - k ' / 2 ) 2 ) F ( ( k - p ) 2 ) F ( ( k ' - p ) 2 ) SB(E-f-eB) 

(2TT)V ( £ _ ^ - ( k - p ) 2 - e , 0 ( £ - ^ - ( k ' - p ) 2 - M ) E-p-€B 

(23) 

where eB is the energy of a B particle and SB is the sum of bubbles for a B particle. The appropriate form in this 
case is 

SB (X) = 
T2x dznF2 (n2) 

(27r)v (eB— eA — fff{x— n2-\-eB~- e^)J 
(24) 

We may write (21) formally as 

T=I+IGoSdT, (25) 

which can again be cast into the form of a Lippmann-

Schwinger equation by defining Tf = Sd1/2TSd
1/2 and 

r = Sd
1/2ISdl/2 giving 

T'=r+rG0T'. (26) 
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In this example now V plays the role of the exact 
optical potential for the theory. I t is more complicated 
than the corresponding potential in the n-D example. 
In particular, the richness of channels is reflected by the 
fact that V can go complex in many more ways; by the 
possibility of stripping reflected in the propagator in / , 
by the possibility of B —> n+A reflected in SB in I, and 
by the possibility of d —> n-\-p reflected in Sa, in I'. The 
appropriate thresholds may be read off of (23), (24), 
and (22). Of course, the potential denned by (23) is 
nonlocal and energy-dependent, but it is spherically 
symmetric. The proof that solutions of (21) exist even 
in the bound-state limit follows as in Sec. I l l and again 
depends on the large argument behavior of the source 
functions / and F. 

V. DISCUSSION 

We have seen that by treating composite systems as 
elementary, we are able to derive linear integral equa
tions for the scattering of particles off these systems, 
which equations have solutions, even in the singular 
limit in which the elementary particle represents the 
composite system exactly. These equations can be cast 
into the form of a two-body Schrodinger equation in 
which the three-body effects are exactly taken into 
account in a nonlocal, but spherically symmetric, 
optical potential. In this model, in which the only 
interactions are those which are needed to form the 
composite systems, the equations allow an exact 
solution of a three-dimensional three-body problem 
and as such are a useful model of a number of physical 
situations. 

The success of the method lies essentially in the fact 
that by introducing an elementary particle for the 
composite system, we are explicitly taking account of 
the nonadiabatic effects of the interaction. These non-
adiabatic effects are seen most clearly in an attempt to 

P d 

B A 

d p 

FIG. 6. (a) The relation between the stripping amplitude, 
represented by the round "black box," and elastic d-A scattering, 
the square "black box." (b) The relation of d-A scattering back 
to stripping. The thick lines represent the full d and B propagators 
including bubbles. 

P d 

B A B A 

(a) 

(c) 

FIG. 7. The integral equation for (a) stripping, and (b) elastic scat
tering, (c) a combined "matrix" equation for the amplitudes. 

apply ordinary perturbation theory to the problem. The 
existence of an expansion in powers of the potential for 
the scattering amplitude means that the amplitude 
changes smoothly (is analytic) as the potential is 
"turned off." This clearly is not the case if one of the 
incident particles is a bound state in that potential and 
hence the Born series must fail. This nonadiabatic 
behavior of the amplitude is avoided by treating the 
composite system separately and exactly. One me
chanism for doing this is to introduce an elementary 
particle to substitute for it. The remaining interactions 
then are the difference between the full interaction and 
the separable potential responsible for the composite 
system. This difference has no point spectrum and, 
hence, may perhaps be legitimately treated adiabatic-
ally, that is as a perturbation on a zero-order nuclear 
state which takes the composite system into account 
exactly. We only indicate how to solve the later part of 
that program in this paper, namely the finding of the 
exact solution for zero-residual interaction. This solu
tion may be viewed as a model, as an approximation to 
the actual world, or as a first and necessary step to 
including the residual interaction. We hope to investi
gate its inclusion in a later paper. The idea of splitting 
the interaction into a bound-state part and residual part 
was presented previously by Tani using projection 
operators.12 I t is clear that the difference between the 
two-body interaction and the separable potential which 
has the same bound state is a projection operator off 
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the bound-state manifold. Tani argues, but does not 
prove, that this can be treated as a perturbation so long 
as the projection on the bound state is treated exactly 
but does not show how to construct the operators. The 
introduction of an elementary particle gives an explicit 
construction of the projection operators. I t is not clear 
what leeway one has in constructing them, nor is it 
proven that they in fact represent the bound state in all 
channels, although this seems intuitively clear. 

In our derivations, discussion, and nomenclature we 
have concentrated on the problem of the scattering 
from composite systems which we represent by ele
mentary particles. I t is clear that the method works just 
as well, if not better, if we are interested in the scatter
ing from a "real" elementary particle coupled to the 
other particles as in (4). The method presented here will 
allow that problem also to be reduced to an exact optical 
model taking production, etc. into account. In fact, it 
makes observable predictions about the difference 
between the elementary particle case (ZT^O) and the 
composite particle Z = 0 . Because of the fact that 
S( oo) = 1/Z, the high-energy behavior of the amplitudes 
satisfying the equations should be quite different if 
ZT^O or if Z = 0 . For example, in the large E limit in 
the n-D case, the potential Br defined by (11) tends to 
B/Z which is the unrenormalized Born approximation. 
Hence, in the high-energy limit when Z ^ O , the potential 
tends to zero like 1/E, and probably the first Born 
approximation, that is the inhomogeneous term in (7) 
dominates. This term does not contain the factor of 1/Z 
since S= 1 on the energy shell. If this is true, the scatter
ing from an elementary D particle will tend to the 
renormalized Born approximation at high energy, even 
though the potential tends to the unrenormalized Born 
approximation, but both tend to zero. In the Z = 0 
limit however, the situation is quite different. The first 
Born approximation on the energy shell still decreases 
like 1/22, but the potential does not vanish, since S~E 
for large E when Z = 0. I t is not fair to assume, however, 
that the potential now approaches 

lim[S(E-n2-Dn)J
/2(n\B(E)\n%S(E-n'2-Dn>)J/2 

= C / ( ( n - i n ' ) 2 ) / ( ( n ' - i n ) 3 ) , (27) 

where C is a constant, since n'2 and n2 are not necessarily 
small compared with E in the kernel. The precise high-
energy limit of the amplitude remains to be elucidated, 
but it is clear that this limit will be strikingly different 
if Z = 0 from the Z ^ O case. In the Z=^0 case, the ampli
tude almost certainly goes to zero at high energies, just 
as well-behaved potential scattering amplitudes are 
expected to do. If Z = 0 , however, things are quite 
different and it is tempting to suppose that some sort of 
diffraction behavior will set in. The fact that the poten
tial in momentum space does not go to zero at high 
energy opens the possibility that there may be no 

shrinking of the diffraction peak.22 The singular example 
discussed in Appendix I I is an even better candidate for 
this behavior. Unfortunately, the nonlocal nature of the 
potential makes straightforward application of the 
eikonal method difficult, but we hope, in a subsequent 
paper, to study the high-energy behavior formally or 
numerically or both. I t has been suggested from many 
points of view that the * 'fundamental" particles all 
have Z = 0 , or are in some sense purely composite.23 This 
is, in fact, the simplest interpretation one can give to the 
idea of interaction of maximal strength.24 I t is tempting 
to hope that light can be cast on the high-energy 
behavior of the scattering amplitudes of these particles 
from the analysis presented here. 

Another possible extension of these methods lies in 
the study of the scattering from unstable particles. For 
example, suppose one wishes to study w-p scattering 
and uses as a model the theory in which the only 
coupling is one allowing p <=± 27r. This is essentially the 
n-D theory of Sec. I I . One can study the equations 
derived there and analytically continue the mass of 
the p above the 27r threshold so as to make the p un
stable. Finally, one could study the differences in the 
7r-p system for an elementary, unstable p and a com
posite, unstable p. 

I t is not difficult to see that many more questions are 
opened by the equations presented here. For example, 
one can ask about the analyticity of the amplitudes 
derived here. Do they, for example, satisfy a Mandel-
stam representation?25 What is the status of subtrac
tions? One can ask about iterative expansions. The Born 
series presumably does not converge,6 although a full 
proof of that is still absent, but perhaps the Neumann 
series for (7) will converge now that the nonadiabatic 
effects are summed in the propagators, or at least it 
might converge for large enough energies. For low 
energies it probably will be necessary to insert three-
particle bound states as well if they exist. The question 
of their existence can of course be studied by the meth
ods presented here. There is also the question of the con
vergence of the expansion in the residual interactions 
already alluded to. If that expansion converges, we will 
have a systematic approximation scheme for calculation 
of the three-body problem. Since we have an exact 
multichannel model, we can also analyze these analyti
city questions in the multichannel framework, in 
particular, with respect to multichannel generalizations 
of Levinson's theorem and questions relevant to the 
usefulness of eigenamplitudes, etc. Since we have here 
an exact model of multiparticle events, we also have the 
chance to check and comment on approximation 

22 Y. Nambu and M. Sugawara, Phys. Rev. Letters 10, 304 
1963). 

23 This was apparently first suggested privately by k . Feynman 
to G. F. Chew. See Chew and Frautschi, Ref. 5. 

24 G. F. Chew and S. C. Frautschi, Phys. Rev. 123, 1478 (1961). 
See also note in proof of VAA. 

25 S. Mandelstam. Phys. Rev. 112, 1344 (1958). 
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schemes. In direct interactions such as stripping, for 
example, we may be able to explain the amazing success 
of the distorted-wave Born approximation3 and to 
discover the theoretical limits of its applicability. 

*+n" 

APPENDIX I. CALCULATION OF PROPAGATORS 

We wish to derive (14) for the sum of bubbles. We 
shall do so in a straightforward, if inelegant, manner by 
summing the perturbation expansion for the propaga
tion of a D and an ^represented graphically in Fig. 8. 
The unrenormalized propagator for this sum is 

p(u) = _ 
1 

+ E-Dn^-n2 E-Dn^-

1 

n2 E-Dn^-n2 

1 

E-Dn^-n2 E-D^-n2 

1 
XI- + E~Dn

{0)-n2 
(Al) 

where we assume that E has an appropriate imaginary 
part and where Dn

(0) is the bare energy of a D of 
momentum n. In terms of the bare "binding energy" 
e(0) it is given by Z>n(

0) = i » 2 - € ( 0 ) . The integral / is 

/ (w )2 

I = -
<Pn' }2{n'2) 

2(2TC)*J E-n2- (ri-|n)2-(n'+in)2 
(A2) 

where yM is the unrenormalized coupling constant. 
Summing (Al) we have 

P<«)=(£_ J D n (0 )_ w 2_ / ) - (A3) 

the condition that P(u) have a pole at E=n2+Dn=n2 

-\r\n2—e that is at the physical D with renormalized 
binding energy e, gives for e(0) 

P(o) = ^ — 
y(u)2 r$n' f2(n'2) 

2(2TT)< e+2n''< 
(A4) 

The renormalized propagator must have unit residue 
at that pole. From the commutation relation (3) we see 
that the renormalized propagator P ( r ) is related to P ( u ) 

by JP<'> = P<«>/Z. Combining (A3) and (A4), we may 
write 

[(£-*»*+e)(. P w = ( £ - t « 2 + e ) [Z 

X 

2(2TT)3 

( e + 2 » ' 2 ) ( £ - £ > „ - » 2 - e - 2 w ' 2 ) / 
(A5) 

FIG. 8. The sum of graphs for the propagation of an n of momen
tum n and a D of momentum — n including bubbles. 

where we have defined the renormalized coupling 
constant by y2=y(-u)2Z. From the condition that the 
residue be 1, we get 

Z = l -
72 ff2(n'2)dW 

2(2T)*J (e+2n'2)2 
(A6) 

This condition and the condition 0 < Z < 1 place the 
allowable limits on y. Substituting (A6) into (A5) and 
noting that S(x) is defined by 

pw(x)=(l/x)S(x), (A7) 

we get (14). I t also follows from this that S(oo) = 1/Z. 

APPENDIX II. SINGULAR EXAMPLE 

We have seen in Sec. I l l that the existence of solu
tions of (7) depends on the behavior of the source 
function for large argument. In this Appendix, we wish 
to explore the observation that even if we put / = 1, the 
integrals denning the D particle propagator (14) do not 
diverge. This is different from the case in relativistic 
theories or in theories with relativistic kinematics such 
as the Lee model26 in which the local limit, / = 1, is 
divergent. The difference arises from the fact that the 
energy goes like the momentum squared nonrelativistic-
ally but is linear in the momentum for large momentum 
relativistically. 

The integral for S in (14) is easily done for / = 1, and 
we get 

/ 2e 2e/ x \ 1 / 2 \ 
[S (* ) ] - i= l - r ( l + - 1 — ) ) 

\ X X \ €/ / 
(A8) 

where we have defined T — y2/i2%{2e)11'1 in terms of 
which the limit Z —* 0 is T —> 1. In this limit 5 becomes 

s ( * ) = i [ i + ( i - * A ) 1 / 2 ] 

and the kernel (13) goes to 

l + [ l - ( £ - « ' 2 - D „ . ) / e ] 1 / 2 

*72 ' 
[ £ - » 2 - « ' 2 - (n+n ' ) 2 ]CE-» ' 2 -£> n . ) 

(A9) 

, (A10) 

26 T. D. Lee, Phys. Rev. 95, 1329 (1954). 
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which is easily seen not to be square integrable. Of 
course, if we had not taken the Z = 0 limit it would be. 
Thus, when ZT^O, a solution by Fredholm method is 
possible, whereas when Z = 0 , it is not. Just what the 
status of the integral equation and its solution is in that 
limit is unclear. I t would seem "physically" that a 
scattering amplitude should exist in the bound-state 
limit, but it may be that the only way to solve (7) with 
this kernel is to solve the equation with Z ^ O and then 
take the limit Z —> 0 in the solution. This point may 
not be relevant to the ordinary nonrelativistic applica
tions of the theory because of the results of Sec. I l l , 
but it may be relevant to more singular applications in 
relativistic field theory. 

Another way of stating the problem of the singularity 
is in terms of the optical potential defined in (11). When 
Z=^0 the potential is perfectly well-behaved, but in the 
limit Z —> 0 with the form (A9) for S, the potential 
becomes singular. That is, it is possible to find a class 

of normalizable wave functions for which the expecta
tion of the Hamiltonian becomes negatively infinite. 
This arises from the divergence of the momentum space 
integrals over the potential and corresponds to a 
potential that is too singular at short distances. This is 
the case so long as the energy variable which occurs in 
the potential is finite. I t is seen from (A9) and (11), 
however, that for very large values of this variable, the 
potential goes like E~1/2. Since the potential depends 
on E, solutions of the problem must be self-consistent. 
The E in the potential must be the same as the " eigen
value" of the Hamiltonian. A negatively unbounded E 
does not satisfy this criterion and, hence, may be ex
cluded, but just how is unclear. 
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